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Abstract Speech and hand gestures offer the most nat-
ural modalities for everyday human-to-human interac-
tion. The availability of diverse spoken dialogue appli-
cations and the proliferation of accelerometers on con-
sumer electronics allow the introduction of new inter-
action paradigms based on speech and gestures. Little
attention has been paid however to the manipulation
of Spoken Dialogue Systems (SDS) through gestures.
Situation-induced disabilities or real disabilities are de-
terminant factors that motivate this type of interaction.
In this paper six concise and intuitively meaningful ges-
tures are proposed that can be used to trigger the com-
mands in any SDS. Using different machine learning
techniques a classification error for the gesture patterns
of less than 5% is achieved, and the proposed set of
gestures is compared to ones proposed by users. Exam-
ining the social acceptability of the specific interaction
scheme high levels of acceptance for public use are en-
countered. An experiment was conducted comparing a
button-enabled and a gesture-enabled interface, which
showed that the latter imposes little additional mental
and physical effort. Finally, results are provided after
recruiting a male subject with spastic cerebral palsy, a
blind female user and an elderly female person.
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1 Introduction and motivation

According to [12], people prefer a combination of speech
and gestures over speech and gestures alone while in-
teracting with a computer system. The proliferation
of mobile devices imposes new patterns of interaction
as these devices usually compete for the same human
resources needed for other mobility tasks [17] and as
users, whilst mobile, perceive information differently
[27]. Although previous work provides some guidelines
regarding gesture-based interfaces [14], [24], little at-
tention has been paid to the question of how to control
spoken dialogue systems with gestures, whilst most ef-
forts were directed to parallel combine these two dis-
tinct input modalities in order to control multimodal
interfaces [20], [21]. A notable exception is the newly
introduced feature of iPhone’s Siri, which activates the
microphone after lifting the handset to the ear.

This work tries to alleviate this deficiency by intro-
ducing a novel solution to the problem, where concise
and intuitively meaningful gestures are used to trigger
the commands to any SDS. Specifically, a set of six
gestures is used for moving forward and backward in
the dialogue flow, starting and stopping speaking, get-
ting help and aborting an ongoing action. As a proof
of concept these gestures have been incorporated in the
mobile version of the CALL-SLT system [3]|, which is
a spoken conversational partner designed for beginner-
to intermediate-level language students who wish to im-
prove their spoken fluency in a limited domain.

Special kinds of disabilities related to user’s cur-
rent situation can pose hurdles to the efficient usage of
a mobile speech system. Anyone who has tried using
a similar application with one hand while carrying a
child, reading the screen display during a sunny day, or
interacting with the screen while wearing gloves knows



Nikos Tsourakis

how he or she can become “effectively” impaired. The
concept of “situation induced disabilities” [37] has been
introduced to describe similar non-optimal conditions
where the user’s behavior is dictated by both the en-
vironmental conditions and the characteristics of the
device. Although the move in the direction of gesture-
driven interfaces was motivated by feedback from non-
disabled people who have used the application, it be-
comes apparent that all the arguments apply even more
strongly to users who are vision-impaired or lack fine
motor control. The coordination required to use the
normal button-controlled interface is experienced as chal-
lenging by many non-disabled people, and would be
beyond the reach of almost all users who experience
problems with sight or fine motor skills.

In contrast, it is likely that the gesture-based inter-
face could be operated in many of these situations. If,
for example, the device is strapped to the user’s hand
(like a smart watch [26]), it can be operated using only
gross motor movements. The fact that gesture iden-
tification is trained from the user’s own repertoire of
movements means that it can potentially be adapted
to a wide range of conditions.

In this work, apart from introducing the gestures,
eight users were asked to perform and to evaluate them.
Using machine learning techniques, the aim was to quan-
tify how well each gesture pattern can be separated and
thus obtain a good estimate of what can be expected
from a future deployed system. Participants were also
asked to propose their own set of gestures and evaluate
the ones presented by us. The social acceptability of
this type of interaction was also examined, since hand-
held devices are part of one’s public appearance. Fi-
nally, eight participants were asked to use CALL-SLT
using both the button-enabled and gesture-enabled in-
terfaces. Tests were also performed with a male subject
with mild cerebral palsy, a blind female user and an
elderly female person.

The rest of the paper is organized as follows. Sec-
tion 2 describes the CALL-SLT gesture-based interface,
and Section 3 the data collection protocol. Section 4
presents a series of experiments designed to evaluate
performance issues. The final section concludes.

2 Gesture-driven interfaces

Gesture-driven interfaces augment traditional graphi-
cal user interfaces by incorporating specific hand poses,
spatial trajectories of the hands or stylus, motions to
indicate an object, or motions of almost any body part
[25]. The growing interest in multimodal interface de-
sign is inspired largely by the need to offer friendlier in-
terfaces that allow a more natural user interaction. Ges-

tures are an alternative or complementary modality for
application control. There is a broad spectrum of hard-
ware and software applications that leverage gestures as
an input source especially in the game industry (cf. Mi-
crosoft Kinect, Nitendo Wiimote) as well as hundreds
of mobile accelerometer-based applications for Android
and 108S.

Different technologies can be used to capture these
gestures either in active or in passive mode. Dedicated
devices such as position trackers or sensing data gloves
can be incorporated in the active mode [18]. In passive
mode user input can be monitored with one or more
cameras and computer vision algorithms are used to
segment and classify the image data [4]. While passive
modes may be “attentive” and less obtrusive, active
modes generally are more reliable indicators of user in-
tent [29]. The interface that will be described in the
next subsection works in active mode.

In everyday life people may use gestures as the only
means of communication; in most cases however ges-
tures occur along with other modalities such as speech.
Since the appearance of the “Put-That-There” demon-
stration system [2], which processed speech in parallel
with touch-pad pointing, a variety of new multimodal
systems that utilize hand gestures have emerged. Most
efforts have been directed towards seamlessly combin-
ing speech and gestures in order to control multimodal
interfaces [20], [21], while others have focused on the
synergies among them to accomplish a task [31], [39].
Gestures have also been incorporated in physical spaces
for interacting with large displays [28] or with digital
home environments [40]. Additionally, work from [8] in-
vestigated the usability of gestures and how they could
be used to express the most frequently used remote
control commands. Studies agree however that differ-
ent people usually prefer different gestures for the same
task [16], [28].

2.1 A Gesture-Based Interface

CALL-SLT is a generic multilingual Open Source plat-
form based on the “spoken translation game” idea of
[42]. The core idea is to give the student a prompt, for-
mulated in their own (L1) language, indicating what
they are supposed to say; the student then speaks in
the learning (L2) language, and is scored on the quality
of their response. When the student has practiced suffi-
ciently on the current prompt, they can ask for the next
one. At any time, they can request help; the system re-
sponds by giving textual and/or spoken representations
of a correct response to the current prompt. A detailed
overview of CALL-SLT functionality can be found in [3]
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Fig. 1 Left: CALL-SLT English-for-French application running on the Samsung Galaxy Tab. The middle pane shows the
prompt; the top pane, the recognition result; the bottom pane, text help examples. Button controls are arranged along the
bottom. Right: Typical readings of the axes when the device is in various positions.

and the top-level software architecture of the system in
[9].

The system also offers several ways to control both
the flow of prompts and the way in which the match-
ing process is performed. For example, prompts are
grouped into lessons, each of which will typically be
arranged around a theme, and recognition can be ad-
justed so as to make it more or less forgiving of im-
perfect pronunciation. The student will sometimes use
these features, perhaps selecting a new lesson or mak-
ing the recognition more forgiving if they are having
difficulties. Most of the time, however, they will be in
an interaction loop which only uses a small set of core
commands. They get the next prompt, optionally ask
for help, start recognition, stop it when they have fin-
ished speaking, and see whether the system accepted
their spoken response. If it did, they move to the next
prompt; otherwise, they try again. It is consequently
very important to make the core commands ergonomi-
cally efficient. The left side of Figure 1 shows a screen-
shot of the GUI for the mobile version of the CALL-SLT
system, whereas in the right side some typical readings
of the accelerometer are presented.

For the mobile version of the system, a button- con-
trolled interface poses many problems. Few users will
have a headset, and the majority will use the tablet’s
onboard microphone; this involves lifting the tablet to
the user’s mouth while speaking, and makes a push-
and-hold interface extremely inconvenient.

Another important point is that there is no tactile
feedback from the touch screen, increasing the user’s

uncertainty about the interaction status. All of these
problems become more acute when one considers that
a crucial point of deployment on a mobile device is to
be able to access the system in outdoor environments,
where the screen is less easily visible and the user may
be walking or inside a moving vehicle.

For these reasons, the use of an interface has been
investigated, which controls the key CALL-SLT func-
tionalities using the intuitive gestures shown on Fig-
ure 2. The current version of the interface supports
six gestures. “Get next prompt” and “Return to pre-
vious prompt” are signaled by tipping the tablet right
and left. “Start recognition” is triggered by moving the
tablet so that the microphone is in front of the user’s
mouth (this involves rotating the device by about 90
degrees, since the Galaxy Tab’s microphone is on the
upper left side), and “End recognition” is triggered by
moving the tablet away from the mouth again. “Help”
is requested by moving the device so that the speaker
is next to the subject’s ear, the natural position for lis-
tening to spoken help in a noisy environment. “Abort”
is signaled by shaking the device from side to side. In
essence, these gestures constitute the minimum set that
covers the basic functionalities of any spoken dialogue
system.

3 Data collection

Galaxy Tab’s onboard accelerometer was used, which
returns measurements of the G-force experienced by



Nikos Tsourakis

Fig. 2 Proposed gestures set: From left to right, bottom down next, previous, start recognize, stop recognize, help, abort.

Table 1 Non-gesture movements used in experiment.

Lying
Sitting, holding

The device is lying on the table
The user is sitting, holding the

device in front of him
The user is standing, holding the

device in front of him
The user is standing, holding the

device vertically

Standing, holding

Standing, relaxing

Running The user is running

Climbing The user is climbing a flight of
stairs

Descending The user is descending a flight of
stairs

Walking The user is walking

the device along each of the three component axes, and
sampled these values every 50 msec for one second while
performing examples of the six commands. Twenty ex-
amples of each command from eight subjects were col-
lected, half male and half female, between 20 to 50 years
old with higher academic education; half of them had
no IT background. The six right-handed subjects used
the device as depicted in the diagram (Figure 2), hold-
ing it in their left hand while seated. The registration
of each gesture was initiated by pressing a start button.
This has the advantage that each interaction starts from
the initial position and that the acquired accelerometer
data corresponds only to the gesture performed.

This configuration is the natural one for a right-
handed person; they hold the tablet in their left hand,
since they wish to press the buttons with the fingers
of their right hand. The two left-handed subjects held
the device in their right hand, and used their left hand
to manipulate the controls. Similar data was also col-
lected for eight common non-gesture conditions shown
in Table 1.

The mean and Root Mean Square (RMS) values for
the X-, Y and Z-axis components were extracted and
used as the main features. RMS is a useful statistical
measure when variates are positive and negative as in
this case. The plots in Figure 3 show the data-points for
the XY plane, tagged by gesture, for one of the subjects.
Even with a very basic feature-space, Figure 3 suggests
that the gestures should be easy to separate from each
other.

4 Experiments
4.1 Gestures classification

Different methodologies have been proposed in the liter-
ature for performing the classification of gestures, e.g.
Dynamic Bayesian Networks [5], Support Vector Ma-

chines (SVM) [32], [44], Hidden Markov Models (HMM)
[15] and Dynamic Time Warping and k-means clus-
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Fig. 3 Separation of gestures in acceleration-space: RMS (left) and mean (right) values of the X and Y components of

acceleration for one of the subjects.

Table 2 Classification error (percentage) on gesture recognition using 8 classifiers.

Classifier

6 Features
(X-Mean, Y-Mean, Z-Mean, X-RMS, Y-RMS, Z-RMS)

Correctly Precision  Recall F-Measure
Classified
Naive Bayes 91.61% 92.48% 91.61% 91.64%
END 90.18% 91.14% 90.20% 89.71%
SVM 92.50% 92.81% 92.50% 92.34%
Decision Tree C4.5 87.14% 88.45% 87.15% 86.45%
Functional Trees 90.89% 91.75% 90.90% 90.81%
Random Forest 89.82% 90.44% 89.84% 89.4%
Nearest Neighbor 93.39% 94.45% 93.41% 93.01%
Multilayer Perceptron  92.50% 93.19% 92.51% 92.29%
Table 3 Confusion matrix for the Support Vector Machine classifier.

Movements a b ¢ d e f g h i j k I m n
a  Next 330 0 0 2 0 0 O O O O 0 0 O
b Previous 0 32 1. 0 0 0 O O O O O O O
¢ Help 0 3 31 0 0 0 0 0 0 0 0 0 O
d Abort 0 0 1 390 0 0 0O 0 0O O 0O 0 O
e  Start recognition o 0 0o 0 382 0 O O O O 0 0 O
f  Stop recognition 1 0 0 0 3 340 0 1 0 O 0 1 O
g Lying 0o 0 0 0 0O 0 400 0 O O O 0 O
h  Sitting, holding 0 0 0 0 OO0 0O 4900 0 O 0 0 O
i Standing, holding 0 0 O O O O 0O O 400 O O 0 O
j  Standing, relaxing 0 O O O O O O O O 40 0 O O O
k  Running 0o 0o 0 0 00 0 0 0 0 400 0 O
1 Climbing 0 0 0 0 OO0 0 0 0 0 0 3228 0
m Descending 6 0 0 0 O 1 0 O O O O 9 240
n  Walking 0 0o 0 0O OO 0O 0O O 0 0 0 0 40

tering [6]. The trade-off among these methods is in
accuracy versus the processing time and the amount
of training data required. The following three subsec-
tions present an experimentation with a subset of these
methodologies by utilizing either features from the ac-
celeration vectors or all the data available.
4.1.1 Feature-based classification

Experimentation with some standard machine learn-
ing algorithms confirmed the intuitive impression that
the gestures could easily be separated, and also showed

that the gestures could be separated reasonably well
from the non-gesture conditions. For each subject, 75%
of the data (both gesture and non-gesture) was used
for training and 25% for testing. Classification was per-
formed using Naive Bayes, Ensembles of Nested Di-
chotomies [7], Multilayer Perceptron with back prop-
agation (one hidden layer with 10 hidden nodes, learn-
ing rate 0.3 and momentum 0.2, 500 epochs sigmoid for
activation), Decision Trees implementing C4.5 pruned
algorithm, Random Forest of 10 trees considering 4 ran-
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dom features classifiers and Functional Trees [10], Sup-
port Vector Machines (polynomial kernel and trade-off
between training error and margin 5000), and Nearest-
neighbor using non-nested generalized exemplars [23].

The results of the different classification methods
using the Weka Toolkit [11] are shown in Table 2, where
it can be seen that most of the methods offer low error
rates. Note that the classification tasks were performed
using data from both gesture and non-gesture move-
ments. The confusion matrix for SVMs presented in
Table 3 provides a better overview of the classification
task. As one can observe, the “descending”’ movement
seems to cause the most recognition errors, where only
24 out of 40 test samples (60%) were correctly classi-
fied. In general the six gestures of interest can be easily
recognized.

4.1.2 Hidden Markov Model classification

The analysis in the previous subsection was based
on features extracted from the sampled acceleration
frames (X-, Y-, Z- values every 50 msec). In this sub-
section and the following two, different classification
methods that process each one of the frames instead
of the calculated features will be applied. The immedi-
ate benefit of feature extraction is the dimensionality
reduction, which can offer faster processing times and
reduced storage sizes. However, when these issues are
not of prime importance the exploitation of every single
data element by statistical models like Hidden Markov
Models can offer better results.

HMMs have been extensively used in speech recog-
nition systems and due to their ability to classify tem-
poral data of no fixed length are a good candidate for
gesture recognition. Different studies claim high gesture
recognition rates; according to [16] up to 98.8%, to [36]
between 85% and 95% and according to [33] 97.6% on
average. The results shown in Table 4 were produced
after training a left-to-right HMM with six states in
the Weka Toolkit, for each gesture and user.

Continuing the analysis, the aim was to investigate
the effects of vector quantization on the data. As it has
been already mentioned the accelerometer was sampled
every 50 msec for 1 sec yielding a sequence of frames
containing the X, Y, Z acceleration force. As depicted in
Figure 4, the quantization process of the training data
is the following;:

1. Get the input movement (next, previous, walking,
ete).

2. Eliminate similar frames using the Euclidean dis-
tance. Keep the frames that are dissimilar above a
cutoff threshold. This was empirically chosen equal
to 0.055.

3. If n is the desired codebook size and m the frame
array size, cluster the frames into n groups. Be-

sides hierarchical and k-means clustering one can
create a codebook with n random vectors from the
frame array (random) or sort the frame array and
get the vectors at position m/n, 2m/n, ..., nm/n
(simple).

4. The result is a codebook for each movement, clus-
tering method and codebook size.

Table 5 summarizes the percentages of input vec-
tor that remained for the follow-up analysis after per-
forming the preprocessing step. The results provide an
indirect indication of how complex a gesture is. For ex-
ample, if you just sit and hold the device in front of
you, the remaining vectors are 6.46% of the initial ones,
whereas if you descend a flight of stairs the ratio rises
to its highest value of 92.32%. A correlation test was
performed between the gesture recognition error using
the SVM classifier and the remained vector percentage;
it was found that the two variables are negative cor-
related (Pearson’s r(12)=-0.54, p<0.05), so the gesture
complexity has an impact on the recognition perfor-
mance.

Figure 5 presents a visualization of the “next” ges-
ture acceleration vectors after the clustering process.
As it can be observed, the methods offer a quite good
distribution of prototype vectors of the sample vec-
tors. During the testing phase the 3-dimensional vec-
tors which are less distant than 0.055 from the preced-
ing vector are filtered out. The vector quantizer maps
the remaining input vectors to codebooks of sizes 8, 14,
20 or 28. All movement codebooks with the same size
were merged into a single one and the HMM classifi-
cation produced the results presented in Figure 6. The
hierarchical clustering seems to outperform the others;
when using codebooks with more than 14 vectors the
results are comparable to the ones of Section 4.1.1.

Two-way ANOVA, identified significant main effects
of clustering method (F(3,127)=7.32, p<0.001) and code-
book size (F(3,127)=16.67, p<0.001) on the correct clas-
sification rate. A post-hoc Tukey’s HSD (p<0.05) pair-
wise comparison revealed the significant differences shown
in Table 6.

4.1.3 Template classification

Unlike the machine learning and statistical meth-
ods presented in the previous subsections that require
sufficient number of samples to be trained, it is often de-
sirable to use alternative classification methods based
on template matching. These can start working even
with one sample per gesture and thus minimize train-
ing time. In this subsection the $1 recognizer [43] has
been incorporated, which is a small footprint recognizer
of gestures made by path-making instruments like pens
and fingers in the two dimensional space; according to
the authors it can achieve 99% accuracy of recogniz-



Using Hand Gestures to Control Mobile Spoken Dialogue Systems

Table 4 Classification error (percentage) on gesture recognition using HMM.

Classifier Use the X, Y, Z acceleration frames
(sampled every 50 msec for 1 sec)
Correctly Precision Recall F-Measure
Classified
HMM 95.54% 96.36% 95.53% 95.34%
Train Vectors Preprocessing Clustering Codebooks
5.5.2) nas
- X, 5.2, ] Euclidean simple  hierarchical e
. . distance
: Hv, - x> 0.055 random  k-means [X,.%,.7,]
okl
walking
Fig. 4 Quantization process using the training data of each movement.
Table 5 Rate of the input vectors that remained after the preprocessing step.
next previous help abort start stop lying
Rate 77.41% 84.11% 81.84% 87.82% 79.79%  78.34% 6.3%
sitting standing  standing  running climbing descending walking
holding holding relaxing
Rate 6.46% 7.35% 29.59% 88.256%  84.64%  92.32% 85.56%
original k-means hierarchical

Fig. 5 Quantization of the “next” gesture using different clustering methods (codebook size
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Fig. 6 Classification with HMMs using different clustering methods and codebook sizes.
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Table 6 Significance difference of clustering methods and codebook sizes in pairwise comparisons using Tukey’s HSD test.

simple random k-means hierarchical
simple <0.001 <0.001 <0.01
random 0.99 0.99
k-means 0.98
hierarchical
8 14 20 28
8 <0.001 <0.001 <0.001
14 0.18 0.14
20 1
28
100 -
= S 99
=
- =
Qg; an XZ-15  X7-10 X7.5 o .
5 X | 3 = £ 54e
14 » L | 6-5
c + c ¥
g2 80+ vyzis5 0 =
g 7 Yz10 vzs =
= =
£ = = 03 |
s 70 A =
3] X7 3]
|
60 - YZ N 14-15
Xy = +
50 b 87

plane - training samples

gestures number - training samples

Fig. 7 Left: Classification using the $1 Recognizer in the XY, XZ, YZ planes and with different size of training data. Right:
Classification using the uWave algorithm with different size of training data.

ing 2-D single-stroke paths on a display. The $1 recog-
nizer performs template classification by matching the
geometric specifications of two handwritings. The algo-
rithm involves four steps: 1) resample the input points,
2) rotate the points at 0°, 3) scale points in a bound-
ing box and 4) match points against a set of templates.
Despite the fact that the gestures in this case study
are performed in the three dimensional space, it was
desired to investigate the classification performance of
this approach in the XY, XZ and YZ planes.

In a similar manner as before, 75% of the data (both
gesture and non-gesture) were used for training and
25% for testing. Figure 7(left) shows the results of the
recognition performance (XY, XZ, YZ), where the XZ

plane demonstrates the highest correct classification rate.

For real applications however this is far from accept-
able. Therefore, the analysis was repeated by removing
the non-gesture movements (sitting, walking, etc) as a
compromise with what a user might do during interac-
tion with the system. Moreover, the number of training
samples (15, 10, 5) were altered and the corresponding
results are also depicted in Figure 7(left) for the XZ
and YZ planes. The best rate is again for XZ with 15
training samples and it is equal to 87.92%. One-tail t-
tests between pairs of XZ, YZ for the same number of
training samples show statistical significant differences.

Specifically, for 15 samples: t= 2.31, df=7, p<0.01, for
10 samples: t= 2.94, df=7, p<0.01 and for 5 samples:
t= 3.52, df=7, p<0.005.

Although the results are less than optimal, the de-
velopers may benefit from the low requirements of this
approach by using an even smaller set of gestures or in-
troducing an alternative, easier recognizable set. How-
ever, a more promising approach is to combine the recog-
nition results in the different planes and ultimately to
implement a similar algorithm in three dimensional space.

To finesse the limitations of the previous template
matching technique, which can be used efficiently for
certain types of user interface gestures, the uWave al-
gorithm [22] was incorporated based on Dynamic Time
Warping (DTW) in order to classify our gestures. The
data are used again directly without doing any fea-
ture extraction and are processed in the time domain
as specified by the DTW. The algorithm bases recog-
nition on the matching of two time series of forces,
measured by the single three-axis accelerometer. The
analysis yields to a recognition accuracy result equal to
88.66% (Figure 7(right)). As before, the minimum set
of gestures (6 gestures) and different sizes of training
data sets (15, 10, 5) were used. When all the training
data are used the correct classification rate is 96.25%. A
single-factor ANOVA showed no significant differences
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Fig. 8 Charts of the easiness, impression and preference for each one of the proposed gestures.

in the classifications rates for the various sizes of the
training data.

4.2 Gestures survey

Before providing the data analyzed in the previous sub-
section, the same users were asked to participate in an
evaluation of the proposed gesture set. After a short
introduction of the non-gesture GUI and the presenta-
tion of a short video clip, they had to improvise ges-
tures that would provide the same functionality. It was
emphasized to the users that help is acoustic as well
as visual and that one had to speak close to the mi-
crophone of the device. Following the presentation of
the gesture repertoire, the users were asked to fill out
a questionnaire that asked how difficult it was to per-
form each gesture, if it was intuitive or not, and if they
preferred it to their own suggestion. The results of this
survey are shown in Figure 8.

As one can observe, most of the subjects agree that
the proposed gestures are easy to perform and are in-
tuitive. They also prefer the proposed set compared to
theirs, with a small exception on the “abort” gesture. It
is suggested that this has to do with the user’s personal
feelings concerning the specific movement. As a matter
of fact three of them had chosen the same gesture for
“abort”; just flip the device, related to the metaphor
of how you hang up the telephone set. According to

another user this metaphor applies when one is using
the system inside the car; the user simply puts the de-
vice down to signify “stop recognizing”. Cultural dif-
ferences were also encountered as one subject proposed
for “help” the hand gesture that signifies question for
many Greeks (rotating clockwise the palm close to the
face). Apart from one subject, all participants recom-
mended gestures that were easy to execute. Finally, one
of the participants suggested that he would prefer an
interface that combined both hand-gestures and voice
commands.

It is not proposed that this suggestion on how to
perform each gesture is unique and applicable to any
person. As stated in the introduction of this paper, the
idea is to train the system from the user’s own reper-
toire of movements, which can obviously change be-
tween user types and conditions. In another domain (in-
teracting with large displays) different subjects seemed
to prefer different gestures for the same activity [28],
something that was expected to encounter in the present
case. Moreover, the tablet used has a physical size sig-
nificantly larger than that of a typical smartphone, so
one may reasonably argue that the proposed gesture
set is not applicable to all devices. From the authors’
point of view there is a lack of a large scale metaphor
for gesture-based mobile spoken dialogue systems. Vi-
sual user interfaces have significantly benefited from the
introduction of WIMP widgets that offer a unified inter-
action scheme. A new WIMP-based interface can rely
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Table 7 Location and audience checklist.

In which locations would you use this

esture?
%check all that apply):

Home

Pavement or Sidewalk
] While Driving

As a Passenger on a Bus or Train
[ Pub or Restaurant
O Workplace

Who would you perform this gesture in
front of?
(check all that apply):

] Alone
Partner

[ Friends

O Colleagues
Strangers
Family

Perform gesture at/while/in front of ...

100% 1 M M MR n
_ 1 home
o | 1 pavement
80% o —=driving
= bus
;? 60% 4 M == bar
T = work
2 M M = alone
g 40% 4 = partner
@ mm friends
8 B colleagues
© 20% - = strangers
L - family
0% . :
next previous start stop help abort
Perform gesture at/while ...
100% 1 = I
: e
80% A
£ 60% -
@
I}
g 40% +
=
=%
o 20% -
o
©
0% T ‘ .
home pavement driving bus bar work

Fig. 9 Average percentage of gestures acceptability in different locations and in front of different people (error bars show one

standard deviation).

on the knowledge accumulated over the years so that
users do not need to learn new ways of doing things.
However, a good analogy for gesture based interfaces is
lacking, so the work presented in the current paper can
be considered as a contribution towards this direction.

4.3 Social acceptability

As well as trying to determine how well gesture recog-
nition works or if users prefer the proposed set of ges-
tures to theirs, another follow-up question was whether
users would be willing to execute them in public. Al-
though much work has been carried out on the techni-
cal aspects of gesture recognition, little attention has
been paid to the social acceptability of interacting us-

ing gestures. Notable exceptions are [34] and [35]. So-
cial factors have an influence on technology acceptance
[19], so it is necessary to offer guidelines for the design
and evaluation of socially acceptable gestures. There-
fore, the study continued by asking the same subjects
as before to identify in which location (6 alternatives)
and in front of which audience (6 alternatives) they
would be willing to execute each of the proposed ges-
tures. As our focus has been on the gesture modality,
we made clear to subjects that their answers should be
irrelevant to the type of the application used (in our
case a language learning system). The corresponding
checklist is shown in Table 7.

The plots of Figure 9 were constructed according
to the users’ answers. As it can be observed, the pro-
posed set of gestures receives a high level of accept-
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Table 8 Significance difference of places in pairwise comparisons using continuity-corrected McNemar’s tests with Bonferroni

correction.

Home Pavement

Driving Bus/Train Bar/Restaurant Work

Home 1 <0.001 0.653 <0.001 1
Pavement <0.001 0.992 <0.001 1
Driving <0.001 0.017 <0.001
Bus/Train <0.001 0.147
Bar/Restaurant <0.001
Work

ability even in public places. Pavements, public trans-
portation and workplaces do not impose any usage lim-
itations. On the other hand, users seem reluctant to
interact using gestures while driving, probably due to
safety reasons as explicitly reported by many of them.
Concerning the audience of usage, there is a univer-
sal positive agreement with a small exception on the
“abort” gesture, which, as seen in the previous sub-
jection, was the most controversial one. Compared to
the aforementioned studies, the intuitiveness of the pro-
posed gestures for the specific applications task has a
beneficial impact on their social acceptance. During the
design phase effort was made to desing the gestures as
simple as possible and also to exploit any commonly
acceptable interaction pattern. By putting the device
close to the ear (help) or in front of the mouth (start
recognition), a user simply re-uses patterns that have
long been available. Likewise, the execution of “next”
and “previous” commands resemble to playing a mobile
video game. Conversely, executing “abort” in public ar-
eas may attract undesired attention.

In order to statistically verify the differences pre-
sented in Figure 9(down), a significance test was per-
formed. The response variables of Table 7 can take two
possible outcomes (coded as 0 and 1), so a Cochran’s
Q test was executed. It was found that there exist sig-
nificant differences in gesture usage in diverse places
(X2(5) = 106.9, p <0.001). A pairwise comparison us-
ing continuity-corrected McNemar’s tests with Bonfer-
roni correction revealed what the significant differences
are, as shown in Table 8.

4.4 Interacting with gestures

In the next part of this work a user study was con-
ducted, where subjects were asked to use both the but-
ton enabled and the gesture enabled versions of the
mobile CALL-SLT system. Specifically, 8 right-handed
participants between 20 and 40 years old were recruited
and asked to use the proposed set of gestures. It was
decided to use native L2 speakers (3 French, 3 Greeks,
and 2 Germans) to avoid excess recognition errors that
could skew the aim of the study. Each experiment was

completed when 30 spoken interactions were performed.
Users had to follow a specific pattern which included
three steps; going back or forward in the prompt list,
asking for help and initiating recognition. It was en-
sured that the list of prompts contained around 20 ele-
ments so that subjects would practice both “next” and
“previous” gestures. Participants started either with
the button version or with one of the gesture-enabled
versions while sitting in an office environment. They
also used the application after it was trained with their
own personal data. In the gesture-based interface shown
in Figure 10(left) the button bar has been replaced with
an image.

Due to source code availability and implementation
easiness it was decided to transcribe the SVM classifi-
cation algorithm of [13] in Actionscript 3.0. The specific
implementation concerned only the recognition part,
whereas the training task using participants’ data was
done offline. For the specific test only 8 of the move-
ments presented earlier were included (6 gestures +
sitting holding + lying). On average the recognition
algorithm running on the device takes 7.6 msec (sd =
2.7 msec). The initial design of the experiment presup-
posed that the accelerometer would always be on. How-
ever, an initial pilot study revealed the deficiencies of
this approach as the gesture recognition error was too
high for any real experimentation. Although one might
argue that a different classification method could offer
better results, this is not the case. As shown in Section
4.1, most of the errors originate from the non-gesture
movements, which even after being removed from the
training corpus did not yield any significant improve-
ment during user tests. Essentially, the main problem is
that the system does not know when the gesture starts.
Therefore, polling the accelerometer every 50 msec for
one second might not give the whole data range of the
gesture the user tries to provide as input. Commercial
systems like Wii rely on a combination of sensors, be-
sides the accelerometer, to decipher the gesture being
performed. IR sensors inside the remote control, detect
motion by tracking the relative movement of IR trans-
mitters mounted on the display. Pressing hardware but-
tons may also signify the start of a movement; unfortu-
nately, however, the development framework of the cur-
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Fig. 10 Left: Gesture-based interface. Right: Scatter plot of the screen points chosen by users to initiate gesture recognition.
Users with odd id started with the buttons version (error bars show one standard deviation).

rent test device prohibited access to this functionality.
So before testing an “open-accelerometer” approach the
authors resorted to a solution of “push-to-move” (simi-
lar to the analogy of “open-mike” and “push-to-talk”).

In the push-to-move configuration, initiation of the
gesture recognition was manually triggered by tapping
anywhere on the tablet’s screen (size of the screen: 7
inches). End of recording was done automatically after
2.5 sec, which was selected empirically from previous
studies. Figure 10(right) shows the average point that
each user has chosen to tap in order to initiate the ges-
ture recognition. From the one standard deviation of
the points it can be suggested that users always tap
on the same area. In a way this area represents a vir-
tual button. Additionally, only participants who started
with the gesture version (even-numbered id) picked a
point outside the area of the previously located button
bar and presented a more substantial deviation from the
average point. Subjects marked with the odd-numbered
id were probably biased by their first session with the
button version.

In the second configuration the accelerometer was
always on. In order to avoid the problems presented
earlier a simple movement activity detector was im-
plemented. The three-dimensional input signal (X, Y,
Z) was merged into one acceleration magnitude. This
was calculated by taking the Euclidean magnitude of
the three individual values according to the formula:
v/x2 + y2 + 22. The activity threshold was chosen em-
pirically equal to 1.2 M/s?.

The reduced set of gestures under study provided
high rates of correct gesture recognition. On average,
a 94.5% correct classification for push-to-move was ob-
tained and 89.5% for open-accelerometer (t=>5.55, df=7,
p<0.0001). The box-plot of Figure 11(a) shows the dis-
tribution among participants. Further analysis focused
on alternative objective measurement around users’ per-
formance on the game per se. As user score the ratio be-
tween the correctly recognized sentences and the total
number of sentences uttered is defined (in the present
case 30). No significant differences in average scores was
found between the three versions (89.26% for button,
87.34% for open-accel and 89.67% for push-to-move),
which is encouraging considering the challenges of using
a new input modality for the first time (Figure 11(b)).
The similar score performance was also verified by the
WER in the three versions. Using a 95% confidence in-
terval after a per-utterance bootstrap resampling [1] no
significant difference was indicated in the three rates,
specifically 92.3% (C.I.: 89.9% - 94.7%) in the button
version, 90.1% (C.I.: 88.2% - 93.6%) in the open-accel
and 91.2% (C.L: 88.6%- 93.8%) in the push-to-move.
Concerning the average completion time of the experi-
ments, the analysis reveals a difference of 3 minutes on
average (button: 6.8 min and push-to-move: 9.77 min,
t=6.61, df=7, p<0.0001, Figure 11(c)). At first glance
this might seem quite high so further processing of the
data was necessary in order to extract specific measure-
ments that explain this difference.

As already mentioned, the experiment was orga-
nized around a specific pattern that users had to follow
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Fig. 11 (a) Box-plot of the gestures recognition rate, (b) Box-plots of the users score, (¢) Box-plot of the completion time
for each experiment. Each box is constructed to contain the 50% of values closest to the mean, whereas the horizontal line

represents the median value.

Table 9 Significance difference of interface versions and performed gestures in pairwise comparisons using Tukey’s HSD test.

buttons push-to- open-accel
move

buttons <0.001 0.29
push-to-move 0.26
open-accel

help next previous recognize
help <0.001 0.22 <0.001
next 0.43 <0.001
previous <0.001
recognize

(next-help-speak). This pattern is considered as a turn
in the experiment so that ideally participants had to
perform 30 turns. First, the aim was to extract the av-
erage amount of time users spend on the turns in each
of the three versions. The turn completion time is de-
fined as the elapsed time between the dispatch of the
next/previous message and the acquisition of the recog-
nition result. The average time in the button version
is 8.9 sec, 12.6 sec for open-accel and 13.5 sec for the
push-to-move (F(3,127)=102.83, p<0.0001). The spe-
cific difference (around 4 sec) has an immediate expla-
nation; the gesture processing step which takes roughly
1 sec (1 sec for the data acquisition and 7.6 msec for
the recognition). In each turn duration this sums up to
an accumulated overhead of 3 sec. The corresponding
probability density function is shown in Figure 12(a).
Continuing the analysis in respect to the difference
in turn times, the time spent by users before inter-
acting was examined. This quantity is named as “user
time” defined as the elapsed time between the presen-
tations of a prompt, a help example or a recognition
result and user’s interaction with the interface. Dur-
ing the “system time” the gesture is captured and rec-

ognized, the corresponding request is served and the
result is presented. In Figure 12(b) the user and sys-
tem times in each turn are decomposed. The compar-
ison of users’ time between the two versions is an in-
dication of how much more they had to think before
interacting; in essence the additional mental load im-
posed on them. In Figure 12(c)(d)(e)(f) the plots that
correspond to user time before the “next”, “previous”,
“help” and “recognize” commands respectively are pre-
sented. As it can be observed, there are slight differ-
ences between the button and the gesture versions. A
two-way ANOVA, identified significant main effects of
interface type (F(3,119)=8.51, p<0.001) and gesture
performed (F(3,119)=23.97, p<0.001) on the thinking
time, showing that interacting with gestures does in-
deed impose a small mental overhead. A post-hoc Tukey’s
HSD (p<0.05) pairwise comparison revealed the signif-
icant differences shown in Table 9.

According to these results, the mental effort is in-
creased when the gesture is preceded by the extra action
of tapping on the screen and not to the gesture per se.
If different values for the button and the push-to-move
are juxtaposed, the results are as follows: 2.1 sec ver-
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sus 2.3 sec (not statistically significant) when the input
gesture is “next”, 2.2 sec versus 2.8 sec (t=3.9, df=7,
p<0.01) for “previous”, 2.5 sec versus 3.2 sec (t=2.8,
df=7, p<0.01) for “help” and 3.2 sec versus 3.8 sec
(t=2.09, df=7, p<0.01) for initiating recognition.

The analysis concludes with the subjective evalua-
tion of the interaction. In order to elicit the subjective
opinion of participants a series of questions were asked
in a paper-pencil questionnaire after the completion of
each experiment. The answers were registered using a
1 to 10 Visual Analog Scale (VAS). Specifically, the
aim was to assess issues like physical effort, concentra-
tion effort, performance of the system, user conforma-
bility and interaction preference. The average answers
are presented in the radar plot of Figure 13. As one can

observe, participants report low levels or tiredness and
medium levels of thinking effort. In accordance with the
objective evaluation users corroborated the fact that
the system worked well for both gesture and voice recog-
nition. Concerning gesture recognition, users assigned
a score of 8.4 for push-to-move and 6.6 for open-accel
(t=4.26, df=7, p<0.0001). Once again, the social accep-
tance of this type of interaction is verified with the low
levels of users stating feeling uncomfortable while per-
forming the gestures although it should be mentioned
that the survey took place in an office environment with
the presence of two observers at most. Users express a
strong agreement that the gesture interface can help in
certain situations and they have a very positive overall
impression from the system. Finally, there is no evident
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Fig. 13 Subjective evaluation results for the two gesture versions.

consensus to which version users prefer most, although
there is a tendency towards the button interface.

4.5 Accessibility for all

According to the World Report on Disability 20111,
the number of disabled people in the world is presently
estimated at around one billion, corresponding approx-
imately to 15% of the current world population. Simi-
larly, the number of people older than 65 will reach 14%
of the world population in the next 30 years, rising to
1.4 billion by 2040 [41]. As stated in [38], disabled peo-
ple prefer of-the-shelf devices over custom-made ones.
Moreover, users with physical disabilities may prefer
speech and hand gestures to keyboard or mouse to con-
trol computer systems [30]. The variety of accessibility
techniques and the lack of interface consistency, how-
ever, force these users to learn new interactions models
for every application they use. The authors strongly
believe that the interaction paradigm provided in this
work, where users can utilize a spoken dialogue appli-
cation with their own gesture repertoire is a possible
remedy for the aforementioned concerns.

In order to address possible issues related to differ-
ent target groups, like users of lack fine motor control or
vision-impaired users, three experiments were executed.
Results will be presented, following an interview with a
male subject aged 22 with mild cerebral palsy. Objec-
tively, with no obvious communication disabilities, the
person experiences kinetic problems that, besides oth-

1 http://www.who.int/

ers, prohibit efficient use of the keyboard. From the very
first moment he was engaged in the conversation that
lasted more than an hour. According to him each person
with cerebral palsy is a unique case, which makes the
design of accessible interfaces a challenging task. He, as
a regular user of dictation systems and other assistive
technologies, had a very good idea of the hurdles posed
in human computer interaction.

The first half of the interview concentrated on the
introduction of the application and discussing common
pitfalls encountered in other systems that should be
avoided. Initially, the main concern posed by the par-
ticipant was the poor results he experienced with other
systems like eye blinking sensors. In this respect the
issue of the sensitivity in recognizing users’ gestures
was deemed of prime importance. The participant pro-
posed to have a training phase before using the applica-
tion, a feature that was already available in the system.
Notwithstanding, the time and effort devoted for train-
ing should be the least possible given issues of physical
and mental fatigue.

The lack of many assistive systems to cover all the
functionalities offered to regular users restricts their ef-
ficient usage and imposes the invention of alternative
workarounds to perform them. Therefore, all these func-
tionalities should be supported either by gestures or by
other modalities (e.g. speech commands). Even before
the proposed gestures for regular users were presented,
issues related to social acceptability and discreteness of
this type of interaction were discussed. The user stated
that he would perform the gestures in front of every-
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Table 10 Mean X- Y- Z- RMS and standard deviation value of each gesture signal. The row with the gray background
corresponds to the disabled person. RMS value for the principal acceleration axis is in bold.

next previous help

X Y Z Z X Y Z
RMS .17 AT .96 .2 .43 .0.97 12 5 .56
sd .07 .08 .13 .07 .08 12 .04 11 .19
RMS .31 31 1.04 .31 .25 1.04 .08 .56 .88
sd 1 .008 .15 .01 .01 .01 .01 .01 .01

start stop abort

X Y Z X Y Z X Y Z
RMS .1 .31 1.02 .13 .33 1.01 .08 .82 .73
sd .03 .08 12 .04 .08 .16 .03 .22 27
RMS 0.13 .38 1.04 .07 .35 1.04 .08 .66 .96
sd .01 .01 0.1 .01 .01 .01 .01 .01 .01

body and in any place besides the pavement and the
bar.

In the second phase of the interview he was asked
to propose his own set of gestures and train the sys-
tem. In order to facilitate the easy registration of the
gestures, an interface that informed the user which one
should perform each time was created. By utilizing a 3-
second countdown counter the user was notified when
to initiate the action. As explained to the participant,
he could manipulate the device as he wished, in por-
trait or landscape orientation and by using one or both
hands. He decided to hold the device with both hands
in front of him (initial position) in portrait orientation
and proposed the following gesture set:

1. Next. From the initial position move the device to
the right.

2. Previous. From the initial position move the device
to the left.

3. Help. From the initial position move the device up-
wards.

4. Start speaking. From the initial position move the
device horizontally towards the torso.

5. Stop speaking. From the initial position move the
device horizontally away from the torso.

6. Abort. From the initial position flip the device ver-
tically parallel to the torso.

Each of the gestures had to be registered five times
with the interface presented earlier. From the begin-
ning of the registration process it was evident what the
deficiencies of that approach were. The subject had dif-
ficulties coordinating his movements as dictated by the
interface and considered the time allocated before the
initiation of the action quite short (3 seconds). This
miscoordination had a negative impact on the data pro-
vided, as sometimes the user executed the wrong ges-
ture. More important, however, was the time he spent
to execute a gesture that frequently surpassed the limit
of 1 second in which the accelerometer was polled. The

specific problems were reflected to the gesture recogni-
tion rate, as for the SVM case 74.29% correct classifi-
cation was obtained.

In order to quantify the energy of the acceleration
signal, a non-disabled person was asked to execute the
same gestures. Table 10 presents the RMS values in
each of the axes and for each movement. The table pro-
vides an indication of the intensity of each gesture exe-
cuted. The energy of the signal in the primary acceler-
ation axis related to the gesture performed is depicted
in bold. In combination with the standard deviation
the user seems to have trouble executing the gestures
intensively, something that was obvious during the ex-
periment. Acceleration data was also acquired while the
user was holding the device in front of him (initial posi-
tion). Spectral analysis did not show any indication of
tremor that could influence the results.

The user proposed to combine voice commands and
gestures, especially for picking list items. Another con-
structive remark was the lack of a “repeat” gesture that
could facilitate the interaction. However the deficiencies
presented earlier prohibited efficient usage of the sys-
tem and it was therefore decided to hold a second round
of experiments after these issues had been resolved.

After introducing the movement activity detection
component to the training interface the user was in-
vited for a new experiment. This time another set of
gestures was proposed, which was executed by holding
the device in landscape orientation with the two hands
(as a steering wheel). Gestures “next” and “previous”
were performed by turning the wheel right and left re-
spectively, and “help” by shaking the device right and
left. To initiate recognition the tablet had to be brought
close to the mouth and for stopping recognition the op-
posite; “abort” was signified by facing the screen dis-
play upwards.

In this case the gesture recognition rate was 94%,
which shows that this set was well suited to the user’s
needs. The average turn time lasted 13.8 sec (sd =
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2.1 sec) and the user achieved a score of 93%. Figure
14(left) presents the average thinking times before each
gesture. Similarly to non-disabled users the “recognize”
movement imposes the higher mental effort as it must
be combined with the speaking task. Finally, the ac-
cidental press of the hardware buttons of the tablet,
located near the left palm of the user, caused temporal
inconvenience.

The second experiment was conducted with a 25
year old blind female subject with 0.01% vision capa-
bility. The interaction paradigm presented new chal-
lenges as the user had to be notified about the out-
come of her gesture. For this reason a set of brief,
distinctive sounds (earcons) was embedded to signify
“next”, “previous” and “recognize”. After a “help” ges-
ture the system started playing back the correspond-
ing help prompt as before. Nonetheless, no feedback
was provided about the recognition result (success or
failure), a deficiency that should be addressed in a fu-
ture experiment. During the training phase the registra-
tion of each movement started after a distinctive sound.
However the user was informed in advance which ges-
ture to execute.

The gesture recognition rate was similar to the one
for non-disabled users and equal to 89%. The average
turn time lasted 13.2 sec (sd = 1.9 sec) and the user
achieved a score of 85%. Figure 14(right) summarizes
again the average thinking times before each gesture,
which are comparable to the results of using the open-
accel version presented earlier. With regard to the so-
cial acceptability of this type of interaction, the user
did not state any concerns performing the gesture in
front of different audiences neither in diverse environ-
ments. Some privacy issues were addressed as the user
would prefer to get feedback with vibrations instead of
earcons.

For the third experiment a female 65 year old sub-
ject, who had poor familiarity with technology and no
previous exposure to similar systems was recruited. The
participant was asked to use both the button and the

gesture (open-accelerometer) interfaces. The aim of the
study and the required tasks were explained as before
and the subject started with the gesture version. De-
spite the fact that she did not express any concerns
about the assigned task, the first reaction after hold-
ing the device was to replace her long distance glasses
with the short distance ones. In general, the interac-
tion was unhindered in both interfaces and real prob-
lems occurred only when the gesture recognition was
unsuccessful. The user seemed to be preoccupied with
performing each turn (next-help-speak) without really
examining what was displayed on the screen. Even the
different earcons associated with each gesture did not
help a lot, as the user continued performing each step of
the interaction pattern without checking the results of
her actions. It was therefore needed to intervene when
necessary, explain what the problem was and asked her
to repeat the gesture. For this reason it was not possible
to extract comparative results between the two inter-
face versions. Finally, the correct gesture recognition
rate was approximately 74%, as the participant did not
always perform them in a consistent way.

Figure 15 presents the subjective evaluation results.
All participants were very positive about the already
implemented system and its potential to help in cer-
tain situations. Neither of them expressed concerns or
discomfort during its usage and all confirmed that it
worked well. Moreover, the subject from the third ex-
periment, having used two interfaces, seems to prefer
the one containing buttons. Finally they all reported
low levels of tiredness after 30 turns, although the user
with cerebral palsy had to think more before perform-
ing a gesture.

5 Conclusions

This paper has described a prototype version of a gesture-
driven spoken dialogue system hosted on a mobile tablet
computer, and presented a series of evaluation tasks.
Specifically, a concise and intuitively meaningful ges-
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How much tired do you
feel? (10:Very tired, 1:Not
at all)

10

Which interface do you
prefer most? .
(10:Gestures, 1:Buttons)

What is your general

How much did you have to
", think? (10:Very much,
1:Very little)

' Were your gestures

mpression? (10:Very {—=*&
good, 1:Very bad)  \ |

Do you think gestures carl #
help? (10:Yes, 1:No) )

Did you feel unconfortable
performing gestures?
(10:¥es, 1:No)

Fig. 15 Subjective evaluation results for the three subjects.

ture set that can be used to trigger commands to any
SDS has been introduced. A series of classification tests
for this application task has also been performed. Guide-
lines for designing socially acceptable gesture interface
were also provided. It has been illustrated that inter-
acting with hand gestures imposes little physical and
mental effort and results have been provided following
interviews with a user with cerebral palsy, one blind
user and an elderly person.

The proposed gesture set can be consider as a case
study that may be interesting to designers that in-
tend to embed motion sensing functionalities in their
speech-enabled applications. Future extensions of this
work include follow-up studies where subjects interact
using their own set of gestures and also perform them
in public settings. Investigation of more robust open-
accelerometer techniques in combination with advanced
gesture activity detection algorithms will exploit this
idea to its full extent. More feedback from less studied
target groups or from people with functional diversities
would also be beneficial. Finally, experimentation with
other classification techniques or by combining different
set of features could provide even more accurate results
and more efficient usage of the device’s resources.

Applications emanating from the game industry have
made everyone aware of the potential of interfaces based
on motion sensing; speech-enabled applications on mo-
bile devices have only become common the last few
years, and connections between the two technologies
have not yet been widely discussed. It is surprising to

i recognized easily?
(10:¥es, 1:No)

___.-Wss your voice recognized
easily? (10:Yes, 1:No)

— cerebral palsy
= = blind
----- elderhy

see what rich synergies are available, which need to be
explored further.
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